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Figure 1 Generic arrangement for hyperdispersion comressor. At 1.053 µm, for 1760
groove/mm gratings with the separation between the second and third gratings of 1-m and
incidence angles of 63°, it is possible to achieve a GDD of –1.336 x109 fs2. For comparison,
using the same gratings and incidence angles, a standard two-grating Treacy compressor with a
separation of 1-m would have a GDD of –4.49 x107 fs2.

Figure 2 Diffraction efficiency versus groove depth and duty cycle
for modern MLD grating design.
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Abstract: A novel, but general, arrangement of parallel sets of gratings is presented that can effectively
increase the dispersion of pulse compressors and expanders by over an order of magnitude. These
arrangements will dramatically reduce the footprint of the pulse compressors and expanders used in CPA.

1. Introduction

Chirped pulse amplification (CPA) [1]is a well-established technique for generation of high-intensity picosecond
and femtosecond pulses. In CPA, grating arrangements are used to stretch pulses prior to amplification and
compress them afterwards. The footprint of CPA pulse compressors and stretchers is proportional the dispersion of
the gratings and to the inverse of the bandwidth of the pulse. For picosecond CPA, compressor-grating separations
of several meters are not uncommon. Application of CPA to materials susch as Nd;YAG and Nd:YLF, whose
bandwidth would limit compressed pulse durations to of order 5 ps or greater, would require impractically large
parallel grating separations. In this paper, we will present a novel, but general, arrangement of parallel sets of
gratings that effectively increase the dispersion of the pulse compressor by over an order of magnitude. These
arrangements will dramatically reduce the footprint of the pulse compressors and expanders used in CPA systems.
This will enable the practical application of CPA to common high-gain but narrow-bandwidth media such as
Nd:YAG and Nd:YLF, and greatly simplify the generation of transform-limited, ~1-10 ps, high-energy pulses for
precision micromachining, x-ray generation, and lidar, etc.

2. Compressor Example

Shown in Fig.1 is a generic
arrangement of the
hyperdispersion compressor. In
this device, nested pairs of
parallel gratings are used. The
second grating of the
configuration amplifies the
angular dispersion of the first
grating. The third and fourth
gratings recollimated the
spectral content and produce a collimated but spatially dispersed pulse spectrum similar to that in a typical Treacy
parallel-grating compressor [2]. By double passing the arrangement, the spatial chirp can be removed and the overall
separation of the gratings required to produce a particular dispersion is reduced by a factor of 2. Because of the
amplified angular dispersion produced by the first two grating elements, the overall footprint (effective grating
separation) of this device can be more than an order of
magnitude less than a conventional two-grating
Treacy compressor with the same dispersion. The
principle drawback of this configuration is throughput,
since the pulse experiences diffraction from 8 grating
surfaces. However, recent advances in multi-layer
dielectric (MLD) grating designs can produce
diffraction efficiencies in excess of 99% [3], see Fig.2.
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